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We describe a numerical model for the interaction of light with large raindrops using realistic nonspherical
drop shapes. We apply geometrical optics and a Monte Carlo technique to perform ray traces through the
drops. We solve the problem of diffraction independently by approximating the drops with areaequivalent
ellipsoids. Scattering patterns are obtained for different polarizations of the incident light. They exhibit
varying degrees of asymmetry and depolarization that can be linked to the distortion and thus the size of
the drops. The model is extended to give a simplified long-path integration. c© 2002 Optical Society of
America
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1. Introduction

Large raindrops are deformed from spheres because
of aerodynamic pressure as they fall at terminal ve-
locity.1–3 Beard and Chuang’s4 (and Chuang and
Beard’s5) model results for the flattening at the base
of the drops are used in this study. Drop shapes are
specified by

r(θ) = a

[

1 +

10∑

n=0

cn cos(nθ)

]

, (1)

where a is the radius of the undistorted sphere, lo-
cated at the center of mass of the drop; θ is the polar
elevation with θ = 0◦ pointing vertically downward
(Fig. 1); and cn are shape coefficients given in Ta-
ble 1. Most previous research is restricted to spherical
drops6–8 or ellipsoid particles.9 Macke and Groklaus10

used the same distorted drop shapes as the present
study for backscattering applicable to Lidar measure-
ments of rainfall intensities. In the current study we
are interested in using drop distortion in a forward-
scatter mode so as to measure drop size and, for long
paths, rainfall intensity. A complete description of the
model, including its application to a long path inte-
gration, can be found in Ross.11

2. The Ray Trace Method

We used a Monte Carlo approach in which a large
number of photons are traced through the drop using
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geometrical optics. Diffraction is accounted for ana-
lytically. For our simulation we chose a wavelength of
λ = 650 nm, and thus the size parameter x = 2πa/λ
is in the range 5×103 . x . 4×104 for the drop sizes
in Table 1. Glantschnig and Chen6 found that geo-
metrical optics produced good results in comparison
with the rigorous Mie theory for x ≥ 20 and scatter-
ing angles ≤ 60◦. Macke et al.12 found this condition
to be x ≥ 60. In a different study,13 computations
were carried out over a wide range of size parameters.
The results showed that the deviation from Mie the-
ory is less than 1% for size parameters x ≈ 104 and
m = 1.33, confirming the validity of our geometrical
optics approach.

A. Forward Scattering

Table 2, adapted from van de Hulst,14 gives the for-
ward- and backward-scattered intensities for spherical
scatterers and polarizations perpendicular and paral-
lel to the scattering plane (polarization 1 and 2, re-
spectively). Over 91% of light of polarization 1 and
more than 97% of polarization 2 is forward scattered.
As can be seen from Table 2, upward of 99.5% of
the total forward-scattered light for both polarizations
emerges from the first interface after simple reflection
(p = 0) and from the second interface after twofold
refraction (p = 1). The fraction of forward-scattered
intensity in the p = 0 and p = 1 rays increases for
more distorted drops (see Section 4), and so it is suf-
ficient to consider only the contributions of these rays
to forward scattering.

B. The Procedure

Fig. 2 shows the flow diagram for the ray trace model.
The model is run with N = 108 photons. Runs for dif-
ferent polarizations of the incident light use the same
set of random photons to exclude statistical variations
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Table 1: Shape Coefficients for Cosine Distortion Fit [Eq. (1)] for Drop Radii between 0.5 and 4.5mm from Chuang and Beard5

a
[mm]

Shape coefficients (cn · 104) for n =

0 1 2 3 4 5 6 7 8 9 10

0.5 -28 -30 -83 -22 -3 2 1 0 0 0 0
0.75 -72 -70 -210 -57 -6 7 3 0 -1 0 1
1.0 -134 -118 -385 -100 -5 17 6 -1 -3 -1 1
1.25 -211 -180 -592 -147 4 32 10 -3 -5 -1 2
1.5 -297 -247 -816 -188 24 52 13 -8 -8 -1 4
1.75 -388 -309 -1042 -221 53 75 15 -15 -12 0 7
2.0 -481 -359 -1263 -244 91 99 15 -25 -16 2 10
2.25 -573 -401 -1474 -255 137 121 11 -36 -19 6 13
2.5 -665 -435 -1674 -258 187 141 4 -48 -21 11 17
2.75 -755 -465 -1863 -251 242 157 -7 -61 -21 17 21
3.0 -843 -472 -2040 -240 299 168 -21 -73 -20 25 24
3.25 -930 -487 -2207 -222 358 175 -37 -84 -16 34 27
3.5 -1014 -492 -2364 -199 419 178 -56 -93 -12 43 30
4.0 -1187 -482 -2650 -148 543 171 -100 -107 2 64 32
4.5 -1328 -403 -2889 -106 662 153 -146 -111 18 81 31

as a possible cause for differences in the scattering pat-
terns. The photons propagate parallel to the x axis
from negative x toward the drop, and a point P on
the drop’s surface can be represented in Cartesian co-
ordinates by

P = r(θ)





− sinφ sin θ
cosφ sin θ
− cos θ



 (2)

where φ is the azimuth angle, increasing clockwise
from the y axis. The surface normal at P is

N =

(
∂P

∂θ
×
∂P

∂φ

)

. (3)

Using Snell’s law and the Fresnel equations, we can
now trace the photons through the drop. The detec-
tor coordinates (Θ,Φ) are defined similarly to (θ,φ),
and arriving photons are resolved into angular bins of
1◦ resolution in Θ and Φ. Each photon generated is
assigned a weight of one. The intensity fractions for
p = 0 and p = 1 are stored in an intensity matrix I

with Θ and Φ as row and column indices, respectively.

3. Diffraction

Analytic solutions for diffraction from distorted drop
shapes do not exist. Here, drop shapes are approxi-

Table 2: Separation into Forward and Backward Scattering for
Polarisations 1 (First Number in Each Column) and 2

Ray Forward Backward Total

p = 0 857 248 163 59 1020 307
p = 1 8217 9456 0 0 8217 9456

combined 9074 9704 163 59 9237 9763
p ≥ 2 44 15 719 222 763 237

All p 9118 9719 882 281 10,000 10,000

mated by area-equivalent ellipsoids, for which the dif-
fraction pattern is known. This approximation is veri-
fied when the exact diffraction problem is numerically
solved for one of the larger drops. Results showed
negligible differences at the angular resolution used.
Given the range of size parameters in this study, dif-
fraction scatters energy equal to refraction and reflec-
tion combined,14,15 i.e., the extinction efficiency is 2.
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Fig. 1: Drop shapes for diameters D = 2, 3, 4, 5 and 6mm
with dashed circles shown for comparison and the angle θ in
the coordinate system used.
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Fig. 2: Flowchart for the ray trace.

A. Diffraction from Spheres

The framework for the elliptical approximation is based
on diffraction from a spherical aperture:16,17

E (q,Σ) =
EA exp [i(ωt− kr)]

r

a∫

%=0

2π∫

θ=0

exp [i(k%q/r)

× cos(θ − Σ)] % d% dθ , (4)

where E is the electric field amplitude, giving intensity
I ∝ |E |2; EA denotes the source strength per unit area
of the aperture; and r the distance between its center
and the detector (Fig. 3). The solution is

I ∝

[
J1(kaq/r)

kaq/r

]2

=

[
J1(ka sinΨ)

ka sinΨ

]2

, (5)

where a is the radius of the aperture, k is the wave
number 2π/λ, and J1 is the Bessel function of the
first kind and order one. The solution does not de-
pend on the angle Σ due to the circular symmetry.
By integrating relation 5, we write the fraction of the
total intensity contained within a cone of angle Ψ as

L(Ψ) = 1−J 2
0 [ak sin(Ψ)]−J 2

1 [ak sin(Ψ)] , (6)

where J0 is the Bessel function of order zero.18

If the energy flux through a ring element of area
2πr2 sinΨ dΨ (Fig. 4) is L′(Ψ) dΨ, then the fractional

OO
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SS
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WW

Fig. 3: Co-ordinate system used for the diffraction integral in
Eq. (4).
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Fig. 4: The energy ring (left) and its projection onto the spher-
ical detector.

flux through a detector element of angular dimensions
(dΘ,dΦ) and area r2 sinΘ dΘ dΦ is

L′(Ψ)
sinΘ dΘ dΦ

2π sinΨ
, (7)

which can be expressed in terms of detector coordi-
nates because cosΨ = sinΘ sinΦ. After this substi-
tution and further simplifications, the final result is

ĨΘΦ =
1

2π

∫

∆Θ

∫

∆Φ

2J 2
1 (akξ) sin

2ΘsinΦ

ξ2
dΘ dΦ, (8)

where ξ stands for
(
cos2Θ+ cos2 Φsin2Θ

)1/2
. The in-

tervals ∆Θ and ∆Φ are appropriately chosen to cover
the size of the bin. By analogy with the intensity
matrix introduced in Subsection 2.B, this yields the
181× 181 intensity matrix Ĩ for diffraction, which we
find numerically.

B. Approximating the Drop Shapes with Ellipsoids

The Fraunhofer diffraction integral for the distorted
drops has no analytic solution as % is a function of θ.
Hence we approximate the drops with areaequivalent
ellipsoids. The cross-sectional area of the drops can
be calculated from

A=
1

2

∮

C

r2(θ) dθ = a2
π∫

0

[

1 +

10∑

n=0

cn cos(nθ)

]2

dθ

= πa2

[

1 + 2c0 + c20 +
10∑

n=1

c2n
2

]

(9)

with the coefficients cn from Table 1.
The discrepancy between the approximation and

the actual drop shapes is the largest for the bigger
drops and vanishes as the size (and the flattening at
the base) of the drop decreases. Fig. 5 shows some
examples.

Extending the circular aperture in one direction
by a constant factor µ will cause the diffraction pat-
tern to contract in that direction by the same factor.
Because of the µ times larger area of the aperture,
the intensity is µ2 times the original intensity at each
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Fig. 5: Comparison between the ellipses used (dash-dot line)
and the actual drop shapes for drop diameters D = 2, 4 and
6mm.

point mapped from the original pattern.17,19 Hence
we can calculate the contribution to each bin from dif-
fraction using elliptic obstacles from the results of a
circular aperture.

C. Verifying the Elliptic Approximation

In this subsection the diffraction integral is evaluated
numerically for one exact drop shape. The results are
used to validate the elliptic approximation.

The constant radius % in Eq. (4) is replaced by the
cosine distortion fit from Eq. (1), and the variable of
integration is changed from % to a, the radius of the
undistorted sphere. Eq. (4) becomes

E (q,Σ) =
EA exp [i(ωt− kr)]

r
︸ ︷︷ ︸

C

R∫

a=0

2π∫

θ=0

× exp

{

i(kqa/r) cos(θ − Σ)

×

[

1 +
10∑

n=0

cn cos(nθ)

]}

× a

[

1 +

10∑

n=0

cn cos(nθ)

]2

da dθ . (10)

To simplify Eq. (10), the following substitutions can
be applied:

χ =
kq

r
cos(θ − Σ), ξ =

[

1 +

10∑

n=0

cn cos(nθ)

]

(11)

1.2 2.4 3.6 4.9
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Fig. 6: Location of the first three minima in the diffraction
pattern from a drop with radius a = 3mm.

⇒ E (q,Σ) = C

R∫

a=0

2π∫

θ=0

exp (iχξa) a ξ2 da dθ (12)

=−C

2π∫

θ=0

[
exp (iχξ a)

χ2ξ2
(iχξ a− 1)

]R

a=0

ξ2 dθ (13)

=−C

2π∫

θ=0

exp (iχξR) (iχξR− 1) + 1

χ2
dθ . (14)

The integrand in Eq. (14) is resolved into its real and
imaginary components:

E (q,Σ) =C





2π∫

θ=0

χξR sin(χξR) + cos(χξR)− 1

χ2
dθ

+ i

2π∫

θ=0

sin(χξR)− χξR cos(χξR)

χ2
dθ



 (15)

which can be evaluated numerically for a given pair of
detector coordinates (q,Σ). To return to the original
detector coordinates (Θ,Φ) it can be shown that

q

r
cos(θ − Σ) = cos θ cosΘ− sin θ cosΦ . (16)

Making the replacements in Eq. (10) and (11) leads to
the same integral as in Eq. (14) except that χ now rep-
resents k times the right-hand side of Eq. (16) instead
of the left-hand side.

Because I ∝ |E |2, only the real part of Eq. (15)
needs to be solved. Fig. 6 shows the results obtained
for a distorted drop with radius a = 3mm. The
locations of the first three minima exhibit a clear el-
liptic symmetry. The dotted lines emerging radially
from the center represent the lines along which the
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integrations were carried out. The dotted circles with
numbers next to them give the lines of constant Ψ as
percentages of a degree. The resolution for the in-
tegration was 10,000 points/deg, which gives approx-
imately 500 points from the center of Fig. 6 to the
outermost circle.

A continuous plot of the field amplitudes E (q, 0◦)
and E (q, 90◦) is shown in Fig. 7. The eccentricity
of the pattern is obvious. The first minimum in the
Σ = 90◦ direction is considerably closer to the center,
indicating the contraction in the horizontal. A simi-
lar comparison between E (q, 0◦) and E (q, 180◦) (not
shown) yields two identical curves within the margin
of error, confirming the symmetry of the pattern about
the horizontal. An interesting feature is the somewhat
elongated sixth maximum in the Σ = 0◦ direction.
This feature returns in a similar shape with every 11th
maximum.

A more quantitative account of the possible flat-
tening in the pattern for the 3-mm drop can be ob-
tained from ℵ(q) = [E (q, 270◦)− E (q, 90◦)]/E (q, 90◦),
which gives a measure for the relative deviation from
horizontal symmetry. Values do not exceed 0.4% and
are only notably over 0.1% within 0.1◦ of the cen-
tral forward direction. We believe that this fully jus-
tifies the elliptic approximation, especially given the
applied angular resolution of 1◦ and also considering
that the distortion decreases for smaller drops. The
same computations can be carried out along the Σ = 0
and Σ = 180◦ directions. Values in the absolute de-
viation do not exceed 4 · 10−6, which is the region of
error applied during the numerical integration and can
thus be neglected.

4. Results

The results from the computer model are presented
separately for the ray trace (no diffraction) and for
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Fig. 7: Logarithmic intensity distribution for the directions (a)
Σ = 90◦ and (b) Σ = 0◦.

scattering including diffraction. The scattering pat-
terns are displayed by a sinusoidal projection method
(which means that the meridians appear as sine func-
tions), hence the scale is preserved only on the central
meridian and along the lines of latitude. This projec-
tion method also renders the region around the central
forward direction without distortions.

A. Scattering from Single Drops – excluding Diffraction

The phase is omitted because the path lengths of the
photons arriving at a particular bin can differ by sev-
eral tens of wavelengths. These effects cancel out for
a large number of photons and do not contribute any
valuable information to the pattern.

Fig. 8 shows the scattering patterns for a 3-mm
drop and 108 photons. In Fig. 8(a) the incoming light
was unpolarized. The pattern exhibits a symmetry
about the central meridian that is to be expected from
the rotational symmetry of the drops about their ver-
tical axis. This can also be observed in the corre-
sponding polar plot of Fig. 9(a) that shows the inten-
sity distribution along the Θ = 82◦ line that contains
the absolute maximum. The concentric semicircles are
lines of constant intensity, and the numbers give the
corresponding intensities as powers of ten. Fig. 9(b)
shows the distribution along the Φ = 90◦ meridian. A
distinguishing feature is the lack of symmetry about
the equator. The absolute maximum has shifted from
the equator (Θ = 90◦) to Θ = 82◦. It is accompanied
by another local maximum at Θ = 130◦. For smaller
drop sizes, the absolute maximum shifts closer to the
(90◦, 90◦) direction again.

Another prominent feature in Fig. 8(a) is the sharp
gradient, creating a steep intensocline that separates
the central area of relatively high intensity from the
outer, low-intensity regions. It is identified by the
narrowly spaced contour lines. The model was used
to record the intensities from the rays p = 0 and
p = 1 separately. The light that arrives outside the
intensocline has mostly undergone a single reflection
at the first interface, whereas the high-intensity area
is mainly lit by the twice-refracted rays.

Fig. 8(b) shows the pattern for the same drop but
with incident light polarized parallel to the y axis.
There are two distinct minima near the equator at
extreme angles for Φ. This can also be seen on the
corresponding polar plot Fig. 9(c). The sum of contri-
butions from all angular bins is slightly (≈ 1%) larger
than for unpolarized light. The opposite is true if
the incident light is polarized parallel to the z axis as
shown in Fig. 8(c): The distinct minima are on the
Φ = 90◦ meridian, symmetrically at Θ = 90◦ ± 74◦.
Light that is reflected into the angular bins containing
the observed minima in Figs. 9(c) and 9(d) originates
from points on the drop’s surface where the angle of
incidence is at the Brewster angle of αp = 53.06◦ and
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Fig. 8: Contour plots of the intensity distribution obtained from a 3mm drop, for: (a) unpolarised light, (b) y- and (c) z-polarised
light. A plot of the difference in the obtained intensities for y-polarised and z-polarised light (non-logarithmic) is shown in (d).
Note that the gray scale below (c) applies for (a) to (c) while (d) being the only non-logarithmic plot has a scale of its own.

where the plane of polarization of the incident light is
parallel to the scattering plane.

Fig. 8(d) shows the difference between the results
obtained for y-polarized and z-polarized incident light.
This plot shows the absolute deviation, and the min-
ima that can be seen in Figs. 8(b) and 8(c) do not ap-
pear. There is, however, a significant difference in the
high-intensity area, inside the intensocline and espe-
cially near the absolute maximum. Note that the scale
of this last plot is nonlogarithmic to allow for both
positive and negative differences. A high-intensity
ridge that extends from Θ = 78◦ to Θ = 86◦ on
the central meridian contains values that exceed the
maximum value covered by the scale [compare with
Fig. 9(f)]. The actual maximum in Fig. 8(d) is 9200
and is located at Θ = 81◦. The maximum difference
of 9200 photons at the central maximum is equiva-
lent to 12.5% in relative terms, which explains why
this feature does not appear on the individual con-

tour plots in Figs. 8(b) and 8(c). If the pattern in
Fig. 8(d) is divided by the (nonlogarithmic) intensity
from Fig. 8(a) (result not shown), the extrema outside
the intensocline visible in Figs. 8(b) and 8(c) can be
observed. The intensity difference at these extrema is
nearly twice the intensity value that is obtained there
for unpolarized incident light. If the incident light is
unpolarized, the reflectance R at αp is half of the value
of R⊥. Because R‖ is equal to zero, the difference be-
tween the y- and z-polarized intensity is equal to R⊥.
Dividing R⊥ by R for unpolarized light thus always
yields 2. The finite size of the angular bins allows in-
clusion of rays for which the angle of incidence differs
slightly from αp. This should always keep the abso-
lute value of the extremes slightly below 2. A drop
of radius a = 0.5mm, for example, has its extreme
values at 1.98 and -1.95, and the corresponding values
for spherical drops are ±1.95. The reason why this is
not observed for larger drops along the central merid-
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Fig. 9: Polar plots for a 3mm drop showing the intensity distribution along: (a) Θ = 82◦ and (b) Φ = 90◦, both for unpolarised
light; (c) Θ = 82◦ for y-polarised light and (d) Φ = 90◦ for z-polarised light. The graphs in (e) and (f) show the difference between
the results for y- and z-polarised light along Θ = 81◦ and Φ = 90◦ respectively. Negative values are plotted into the lower half of
the circles.

ian might be a combination of the varying curvature
along the vertical axis and statistical fluctuations be-
cause the bins at such extreme angles contain only
approximately 35 photons out of the total of 100 mil-
lion.

Fig. 9(e) gives a clearer image of what happens
along the Θ = 81◦ latitude. The scale is again log-
arithmic to accommodate the large spread of values.
The pattern is dominated by the central maximum
and two broad maxima on each side. For smaller drop
sizes the central maximum becomes less dominant and
is almost nonexistent for a 1-mm drop. The two pe-
ripheral maxima, however, remain almost constant in
size and location.

Fig. 9(f) shows the intensity distribution along the
central meridian. It is characterized by closely spaced
maxima and minima. There is a general decrease in

the number of significant extrema to be observed with
decreasing drop size, accompanied by a general in-
crease in overall symmetry.

Over 99.5% of the forward-scattered light from
spherical scatterers emerges from either single reflec-
tion (ray p = 0) or twofold refraction (p = 1). The
assumption was made that this would be similar for
distorted drops, thus justifying rays with p > 1 being
neglected.

Fig. 10(a) shows the percentages of forward-scat-
tered intensity in p = 0 and p = 1 for unpolarized inci-
dent light and drop sizes ranging from a = 0.5mm to
a = 4.5mm. The fraction of forward-scattered inten-
sity increases with drop size, reaching a maximum for
drops with a = 3.5mm. The rapid decline for larger
drops can be explained from Fig. 10(b), which shows
the percentage of photons that are internally reflected
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Fig. 10: (a) The fraction of the total incident intensity that is forward scattered and (b) the fraction of all incident rays that are
entirely internally reflected (regardless of their intensity).

and thus discarded by the model. It can be seen that
internal reflection can be neglected for most drop sizes
and becomes noticeable only for large drops.

To be able to give a quantitative comparison with
some tabulated values, the model was used to find
the scattering pattern that would be produced by un-
polarized light that is incident on a sphere of radius
0.1mm. The result is given in Table 3. It compares
the fraction of energy that is scattered forward in rays
p = 0 and p = 1 from the computer model and Ta-
ble 2. These differ by less than 0.2%, justifying the
model and its assumptions.

Table 3: Comparing Results from the Computer Model and van
de Hulst.14

Fraction of Energy
Source

Model van de Hulst

Percent forward scattered
in p = 0 and p = 1

93.73 93.89

B. Scattering from Single Drops – including Diffraction

The diffraction pattern is dominated by a narrow dif-
fraction peak in the central forward direction. The
width of this diffraction peak depends on the size
of the scatterer. The effects of diffraction are there-
fore demonstrated for two extreme drop sizes: a 0.1-
mm spherical drop and a 3-mm drop. Figures 11(a)
and 11(b) show the combination of diffraction and
ray trace together with the results from the ray trace
alone. The central maximum for the 3-mm drop is
much sharper and slightly higher than for the smaller
drop. The solid and dashed curves only differ notice-
ably near the central diffraction peak, whereas the
intensity at other angles is almost unchanged. This
is significant for the design of an instrument to mea-
sure drop sizes. If the detectors are placed well off the

central diffraction peak, the results can be simulated
with contributions from the ray trace only. This is
illustrated in a more quantitative form in Fig. 12. It
shows the percentile change of the intensity distribu-
tion from the ray trace after diffraction is added. For
the large 3-mm drop, the pattern is affected only by
diffraction for angles of Ψ . 1◦ if we accept a 1% mar-
gin of error. For the smaller drop the same criterion
would yield the condition Ψ . 10◦.
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Fig. 11: Superposition of the polar plots of the logarithmic in-
tensity including all components (continuous line) and with-
out diffraction (dashed line) along the 90◦ latitude for (a)
a = 0.1mm and (b) a = 3mm.
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Fig. 12: The influence of diffraction on the overall scattering pattern. The percentile change between the ray trace only and the
ray trace plus diffraction is shown along the 90◦ latitude for (a) a = 0.1mm and (b) a = 3mm.

5. Practical Application

If a large number of individual field measurements is
averaged, the underlying pattern linking the rainfall
rate with drop diameter shows an exponential charac-
ter as first proposed by Marshall and Palmer.20 They
suggested the following empirical relationship, the so-
called Marshall-Palmer distribution:

N(D) = N0 exp (−ΛD), N0 = 0.08 cm−4; (17)

where N(D)dD is the number of drops per unit vol-
ume having diameters between D and D + dD. The
intercept parameter N0 gives the intercept with the
ordinate for D = 0. The distribution depends entirely
on the parameter Λ that is determined by the rainfall
rate R: Λ = 41R−0.21 where R is in millimeters per
hour and Λ is in inverse centimeters.

We can now establish a function P (D) to represent
the cumulative probability of finding a drop with a
diameter between 0 and D in a large enough sample:

P (D) = 1− exp (−ΛD) (18)

If the drops are approximated as spheres of area π/4D2

[which is possible because the number of drops de-
creases rapidly as the distortion increases - see Eq. (18)]
and by integrating Eq. (17) (while neglecting the con-
stants N0 and π/4 that both cancel out in the normal-
ization), one obtains the following area distribution:

D∫

0

D′2 exp (−ΛD′)dD′ = − exp (−ΛD)

×

(
D2

Λ
+

2D

Λ2
+

2

Λ3

)

+
2

Λ3
. (19)

Normalisation yields

D∫

0

D′2 exp (−ΛD′)dD′

∞∫

0

D2 exp (−ΛD)dD

= − exp (−ΛD)

×

(
Λ2D2

2
+DΛ + 1

)

+ 1 . (20)

Fig. 13 shows the result for different rainfall intensi-
ties. For R = 10mm/h, more than 50% of the in-
cident light falls on drops with D > 1mm, which is
where drops start showing first signs of distortion. For
heavier rain, more larger drops are present; and, as in
the example of a R = 100mm/h event, approximately
80% of the incident light falls on distorted drops. This
suggests that drops with D < 0.2mm do not con-
tribute significantly to the scattered intensity and can
be neglected, which would produce only a 5% error
even for light rain with predominantly small drops.

A. Multiple Scattering

The optical depth of a path of length z can be defined
as:

τz = Ne C z , (21)

where Ne is the number of drops per unit volume in
the sample and C is the extinction cross section. As
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Fig. 13: Area presented to the incident light with drop diameter
for three different rainfall intensities.
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was discussed in Section 3, the extinction cross section
approaches a limiting value of 2A (where A is the area
of the scatterer) for particles with xÀ 1, and thus

τz = 2πa2Ne z (22)

where the drops have again been approximated as
spheres. Ne is given by

Ne =

∞∫

0

N0 exp (−ΛD) dD . (23)

Making the substitution, we find the area-distribution
from Eq. (19) in a slightly different form:

τz = 2πN0z

∞∫

0

a2 exp (−ΛD) dD (24)

= 4πN0z

∞∫

0

a2 exp (−2Λa) da (25)

=
πN0

Λ3
z . (26)

Fig. 14 shows the optical depth as a function of rain-
fall intensity for four different path lengths. Van de
Hulst14 argues that single scattering prevails if τz <
0.1; corrections for double scattering are necessary for
0.1 < τz < 0.3, and multiple scattering is observed
for even larger values of τz. Other sources21 maintain
that multiple scattering can be neglected for τz values
of up to one.

B. Numerical Simulation

The rainfall event is simulated when a large volume
V is created above an imaginary laser beam and filled
with drops according to the Marshall–Palmer distri-
bution for a given rainfall intensity. Only drops in the
size range 0.2mm ≤ D ≤ 8mm were considered for
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Fig. 14: Optical depth as a function of rainfall intensity for four
different path lengths.

the reasons outlined after Eq. (20). The total number
of drops in V is given by

NV = V

0.8∫

0.02

N0 exp−ΛD dD ≈
V N0

Λ
exp (−0.02Λ)

(27)
with the approximation exp (−0.8Λ) ≈ 0 yielding neg-
ligible errors even for high rainfall intensities.

It has been shown experimentally (e.g., Ref. 22)
that, for a constant mean rainfall rate R, the number
of drops is Poisson distributed around the mean. NV

is therefore used as a mean value to produce a Pois-
son deviate NP . Once the volume is filled with NP

drops, each drop is randomly assigned a size from an
exponentially weighted distribution:

D = −
1

Λ
lnx with x ∈ ]0, 1] (28)

where x is a randomly generated number. The drops
are then released and fall at their terminal velocities
(with the values from Gunn and Kinzer23) through
V . Every t seconds a snapshot is taken, recording the
number of drops present in the beam and their sizes.

C. Results

The scattering patterns are obtained when the pat-
terns from individual drops are combined according
to their abundance in the beam. The patterns from
the individual drops are normalized with the cross-
sectional area to obtain a constant intensity per unit
area. The result is a time series that gives the varia-
tions of the received intensity for each angular bin.

As expected, the results show that the higher the
rainfall rate, the higher the mean scattered intensity
over the sampling period. This is shown in Fig. 15
for two different angular bins. The mean detected
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Fig. 15: Dependence of average received light intensity on rain-
fall rate R for (Θ,Φ) = (90◦, 75◦) and (Θ,Φ) = (90◦, 27◦).
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intensity is thus a conclusive indication of the rain-
fall intensity R. The degree of asymmetry about the
equator can also be used to infer the rainfall rate.
Fig. 16 shows the difference between angular bins at
(Θ,Φ) = (90◦–∆Θ, 90◦) and (Θ,Φ) = (90◦+∆Θ, 90◦).
As can be seen, the amount of light received in the bin
below the equator is considerably higher than for the
corresponding element symmetrically above the equa-
tor. The difference increases as expected with rainfall
intensity and varies depending on the distance to the
equator.

Although the light intensity is a stable indicator
of the rainfall rate, the effects of wind on the orien-
tation of the vertical axis of the drop can be severe
on the above symmetry considerations. Other factors
that are likely to occur in real situations and that are
neglected in this model are coalescence, drop breakup,
and oscillations, as well as multiple-scattering events.
Possible realizations of field experiments are given in
Ref. 11.

6. Summary

The distorted shape of raindrops at terminal velocity
is often ignored and approximated with either spheres
or ellipsoids. In contrast, the numerical model devel-
oped in this study determines the scattering pattern
for the true drop shapes. This was achieved through
a combination of geometrical optics and a statistical
Monte Carlo technique. The ray trace yielded scatter-
ing patterns for different drop sizes and polarizations
of the incident light. The shape of the drops could
be inferred from the varying degrees of depolarization
of the scattered light and the asymmetries observed
in the overall scattering behavior. No experimental
data are available for light scattering from distorted
drops. However, the results obtained for small (spher-

ical) drops match tabulated values confirming the va-
lidity of the model.

We have treated the problem of diffraction by suc-
cessfully approximating the drops as ellipsoids. The
error incurred has been found to be negligible even
for the largest drops examined. Adjustments for the
results from the ray trace were necessary only near
the central diffraction peak whereas diffraction can be
neglected for the remaining pattern.

The asymmetries in the scattering behavior can be
used for rainfall measurements with a laser and sev-
eral detectors as the drop size distribution depends
on the rainfall intensity and thus influences the over-
all symmetry. Further details including the experi-
mental realization and application to high-resolution
measurements of rainfall structures can be found in
Ross.11

This model was developed as part of a Diplomar-
beit project (equivalent to a Master of Science) at the
Fachbereich Physik of the Freie Universität Berlin con-
ducted in close collaboration with the Physics Depart-
ment of the University of Auckland that generously
provided the resources for this research.
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